jueves, 20 de octubre de 2016



como se creo el micro chip


El Microchip, o también llamado circuito integrado (CI), es una pastilla o chip muy delgado en el que se encuentran una cantidad enorme de dispositivos microelectrónicos interactuados, principalmente diodos y transistores, además de componentes pasivos como resistencias o condensadores.
El primer Circuito Integrado fue desarrollado en 1958 por el Ingeniero Jack St. Clair Kilby, justo meses después de haber sido contratado por la firma Texas Instruments.
Los elementos más comunes de los equipos electrónicos de la época eran los llamados "tubos al vacío". Las lámparas aquellas de la radio y televisión. Aquellas que calentaban como una estufa y se quemaban como una bombita.
En el verano de 1958 Jack Kilby se propuso cambiar las cosas. Entonces concibió el primer circuito electrónico cuyos componentes, tanto los activos como los pasivos, estuviesen dispuestos en un solo pedazo de material, semiconductor, que ocupaba la mitad de espacio de un clip para sujetar papeles.
El 12 de Septiembre de 1958, el invento de Jack Kilby se probó con éxito. El circuito estaba fabricado sobre una pastilla cuadrada de germanio, un elemento químico metálico y cristalino, que medía seis milímetros por lado y contenía apenas un transistor, tres resistencias y un condensador.
El éxito de Kilby supuso la entrada del mundo en la microelectrónica, además de millones de doláres en regalías para la empresa que daba trabajo a Kilby. El aspecto del circuito integrado era tan nimio, que se ganó el apodo inglés que se le da a las astillas, las briznas, los pedacitos de algo: chip.
En el año 2000 Jack Kilby fue galardonado con el Premio Nobel de Física por la contribución de su invento al desarrollo de la tecnología de la información.
Los circuitos integrados fueron posibles gracias a descubrimientos experimentales que demostraron que lossemiconductores puede realizar las funciones de los tubos vacíos. La integración de grandes cantidades de diminutos transistores en pequeños chips fue un enorme avance sobre la ensamblaje manual de los tubos de vacío (válvulas) y circuitos utilizando componentes discretos.
La capacidad de producción masiva de circuitos integrados, confiabilidad y facilidad de agregarles complejidad, impuso la estandarización de los circuitos integrados en lugar de diseños utilizando transistores que pronto dejaron obsoletas a las válvulas o tubos de vacío. 
Existen dos ventajas principales de los circuitos integrados sobre los circuitos convencionales: coste y rendimiento. El bajo coste es debido a que los chips, con todos sus componentes, son impresos como una sola pieza por fotolitografía y no construidos por transistores de a uno por vez.
Algunos de los circuitos integrados más avanzados son los microprocesadores, que son usados en múltiples artefactos, desde computadoras hasta electrodomésticos, pasando por los teléfonos móviles.
Los chips de memorias digitales son otra familia de circuitos integrados que son de importancia crucial para la moderna sociedad de la información.
Mientras el costo del diseño y desarrollo de un cirtuido integrado complejo es bastante alto, cuando se reparte entremillones de unidades de producción el costo individual por lo general se reduce al mínimo. 
La eficiencia de los circuitos integrados es alto debido a que el pequeño tamaño de los chips permite cortas conexiones que posibilitan la utilización de lógica de bajo consumo (como es el caso de CMOS) en altas velocidades de conmutación.
Las estructuras de los microchips se volvieron más y más pequeñas.
Los fabricantes tuvieron éxito al duplicar el número de transistores en un chip cada 18 meses, tal como lo predijo la ley de Moore. Sin embargo, a medida que los tamaños se han reducido a escalas de átomos, los fabricantes se están acercando cada vez más a los límites de la miniaturización.
Ha llegado el tiempo de probar acercamientos completamente nuevos. Para ésto, los investigadores están actualmente buscando soluciones tales como el uso de pequeños "mini tubos de carbón", los cuales esperan utilizar en los microchips del futuro.
Tan sólo ha pasado medio siglo desde el inicio de su desarrollo y ya se han vuelto ubicuos. De hecho, muchosacadémicos creen que la revolución digital impulsada por los circuitos integrados es una de los sucesos más destacados de la historia de la humanidad.
Existen tres tipos de circuitos integrados:
  • Circuito monolítico: La palabra monolítico viene del griego y significa "una piedra". La palabra es apropiada porque los componentes son parte de un chip. El Circuito monolítico es el tipo más común de circuito integrado. Ya que desde su intervención los fabricantes han estado produciendo los circuitos integrados monolíticos para llevar a cabo todo tipo de funciones. Los tipos comercialmente disponibles se pueden utilizar como amplificadores, reguladores de voltaje, conmutadores, receptores de AM, circuito de televisión y circuitos de computadoras. Pero tienen limitantes de potencia. Ya que la mayoría de ellos son del tamaño de un transistor discreto de señal pequeña, generalmente tiene un índice de máxima potencia menor que 1 W. Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio, silicio-germanio, etc.
  • Circuito híbrido de capa fina: Son muy similares a los circuitos monolíticos, pero, además, contienen componentesdifíciles de fabricar con tecnología monolítica. Muchos conversores A/D y conversores D/A se fabricaron en tecnología híbrida hasta que progresos en la tecnología permitieron fabricar resistencias precisas.
  • Circuito híbrido de capa gruesa: Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula (dices), transistores, diodos, etc, sobre un sustrato dieléctrico, interconectados con pistas conductoras. Las resistencias se depositan por serigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, tanto en cápsulas plásticas como metálicas, dependiendo de la disipación de potencia que necesiten. En muchos casos, la cápsula no está "moldeada", sino que simplemente consiste en una resina epoxi que protege el circuito. En el mercado se encuentran circuitos híbridos para módulos de RF, fuentes de alimentación, circuitos de encendido para automóvil, etc.
  • Clasificación de los Circuitos Integrados:
    Atendiendo al nivel de integración - número de componentes - los circuitos integrados se clasifican en:
  • SSI (Small Scale Integration) pequeño nivel: inferior a 12
  • MSI (Medium Scale Integration) medio: 12 a 99
  • LSI (Large Scale Integration) grande: 100 a 9999
  • VLSI (Very Large Scale Integration) muy grande: 10 000 a 99 999
  • ULSI (Ultra Large Scale Integration) ultra grande: igual o superior a 100 000
  • En cuanto a las funciones integradas, existen dos clasificaciones fundamentales de circuitos integrados (CI): los análogos y los digitales.
  • Circuitos integrados analógicos: Pueden constar desde simples transistores encapsulados juntos, sin unión entre ellos, hasta dispositivos completos como amplificadores, osciladores o incluso receptores de radio completos.
  • Circuitos integrados digitales: Pueden ser desde básicas puertas lógicas (Y, O, NO) hasta los más complicadosmicroprocesadores. 
    Éstos son diseñados y fabricados para cumplir una función específica dentro de un sistema. En general, la fabricación de los circuitos integrales es compleja ya que tienen una alta integración de componentes en un espacio muy reducido de forma que llegan a ser microscópicos. Sin embargo, permiten grandes simplificaciones con respecto los antiguos circuitos, además de un montaje más rápido.
  • Limitaciones de los circuitos integrados:
    Existen ciertos límites físicos y económicos al desarrollo de los circuitos integrados. Son barreras que se van alejando al mejorar la tecnología, pero no desaparecen. Las principales son:
    Disipación de potencia-Evacuación del calor
    Los circuitos eléctricos disipan potencia. Cuando el número de componentes integrados en un volumen dado crece, las exigencias en cuanto a disipación de esta potencia, también crecen, calentando el sustrato y degradando el comportamiento del dispositivo. Además, en muchos casos es un comportamiento regenerativo, de modo que cuanto mayor sea la temperatura, más calor producen, fenómeno que se suele llamar "embalamiento térmico" y, que si no se evita, llega a destruir el dispositivo. Los amplificadores de audio y los reguladores de tensión son proclives a este fenómeno, por lo que suelen incorporar "protecciones térmicas".
    Los circuitos de potencia, evidentemente, son los que más energía deben disipar. Para ello su cápsula contiene partes metálicas, en contacto con la parte inferior del chip, que sirven de conducto térmico para transferir el calor del chip al disipador o al ambiente. La reducción de resistividad térmica de este conducto, así como de las nuevas cápsulas de compuestos de silicona, permiten mayores disipaciones con cápsulas más pequeñas.
    Los circuitos digitales resuelven el problema reduciendo la tensión de alimentación y utilizando tecnologías de bajo consumo, como cmos. Aun así en los circuitos con más densidad de integración y elevadas velocidades, la disipación es uno de los mayores problemas, llegándose a utilizar experimentalmente ciertos tipos de criostatos. Precisamente la alta resistividad térmica del arseniuro de galio es su talón de Aquiles para realizar circuitos digitales con él.
    Capacidades y autoinducciones parásitas
    Este efecto se refiere principalmente a las conexiones eléctricas entre el chip, la cápsula y el circuito donde va montada, limitando su frecuencia de funcionamiento. Con pastillas más pequeñas se reduce la capacidad y la autoinducción de ellas. En los circuitos digitales excitadores de buses, generadores de reloj, etc, es importante mantener la impedancia de las líneas y, todavía más, en los circuitos de radio y de microondas.
    Límites en los componentes
    Los componentes disponibles para integrar tienen ciertas limitaciones, que difieren de las de sus contrapartidas discretas. 
  • Resistencias. Son indeseables por necesitar una gran cantidad de superficie. Por ello sólo se usan valores reducidos y, en tecnologías mos, se eliminan casi totalmente.
  • Condensadores. Sólo son posibles valores muy reducidos y a costa de mucha superficie. Como ejemplo, en el amplificador operacional uA741, el condensador de estabilización viene a ocupar un cuarto del chip.
  • Bobinas. Sólo se usan en circuitos de radiofrecuencia, siendo híbridos muchas veces. En general no se integran.
    Densidad de integración
    Durante el proceso de fabricación de los circuitos integrados se van acumulando los defectos, de modo que cierto número de componentes del circuito final no funcionan correctamente. Cuando el chip integra un número mayor de componentes, estos componentes defectuosos disminuyen la proporción de chips funcionales. Es por ello que encircuitos de memorias, por ejemplo, donde existen millones de transistores, se fabrican más de los necesarios, de manera que se puede variar la interconexión final para obtener la organización especificada.

  • Resultado de imagen para como secreo el micro chip



  • quien creo el micro chip



  • Robert Nayce, en la foto, es el co inventor del circuito integrado miniatura, el cual se utiliza en todo equipo electrónico actualmente.
    Robert Nayce, co inventor del circuito eléctrico integrado, era como una “figura paterna profesional” para Steve Jobs.
    Un día como hoy, diciembre 12, nació Robert Nayce, el co fundador de Intel y co inventor del circuito integrado miniatura o microchip, que se utiliza en todo equipo electrónico actualmente.
    En 1968, junto con Gordon Moore, Nayce fundó Intel.
    A su vez, este ingeniero electrónico lideraba la firma Fairchild Semiconductor, la cual inventó el chip integrado, uno de los primeros pasos de la base de la computación moderna, el microchip.
    En la biografía de Steve Jobs, escrita por Walter Isaacson y publicada poco después del fallecimiento de Jobs, se describe a Noyce como “una figura paterna profesional” para el cofundador de Apple.
    Nayce, quien estudió física y matemáticas, tenía un doctorado en física del Instituto de Tecnología de Massachuttes, MIT, era originario de Burlington, Iowa. El inventor falleció el 3 de junio de 1990, a sus 62 años, por problemas del corazón.
    Nayce, quienes algunos describían como el “alcalde de Silicon Valley”, está hoy presente en Google Doogle, a través de una fotografía de un chip.
    Resultado de imagen para partes del micro chipEn la era tecnológica que vivimos cualquier aparato electrónico, desde los electrodomésticos a las tarjetas de crédito, disponen de un pequeño componente creado hace más de 50 años llamado microchip. El primer microchip, o circuito integrado, fue creado por el físico e ingeniero eléctrico estadounidense Jack St. Clair Kilby mientras trabajaba en Texas Instrument –TI– en 1958. Por aquel entonces Kilby se acababa de incorporar en plantilla para solucionar los problemas de conexión de los componentes electrónicos de la empresa, encargada de desarrollar y comercializar semiconductores y tecnología para ordenadores.
    A los pocos meses se propuso cambiar algunas cosas y descubrió que todos los componentes podían fabricarse con el mismo material semiconductivo empleado en aquel momento, el Germanio, y así crear un circuito completo. Entonces concibió el primer circuito electrónico cuyos componentes activos y pasivos estuviesen dispuestos en un mismo material semiconductor, ocupando la mitad de espacio de un clip sujetapapeles. Su invento que medía 11,5 milímetros dio lugar al primer circuito integrado –CI– o también llamado microchip, revolucionando así el mercado electrónico hasta nuestros días.
    MICROCHIP01
    El nuevo invento, creado por Kilby y desarrollado por Texas Instruments el 12 de septiembre de 1958, estaba constituido por una pastilla cuadrada de germanio, un elemento químico metálico y cristalino, que medía seis milímetros por lado y contenía apenas un transistor, tres resistencias y un condensador. A diferencia de los circuitos convencionales, en el circuito integrado todos sus componentes son impresos como una sola pieza por fotolitografía, abaratando así los costes de manufactura y su mantenimiento.
    Tras el éxito de las primeras pruebas y el desarrollo de las primeras unidades, el invento de Jack Kilby dinamizó la producción de los primeros microprocesadores y sentó las bases técnicas y conceptuales del campo de la microelectrónica. Posteriormente, en el año 2000, fue galardonado con el Premio Nobel de Físicapor la contribución de su invento al desarrollo de la tecnología de la información, siendo reconocido –junto con Robert Noyce– como el inventor del circuito integrado o microchip.
    Desde entonces el mundo de las telecomunicaciones, la electrónica o incluso labiología y la medicina basan su tecnología en el poder de los microchips con el fin de mejorar la calidad y eficacia de los dispositivos y aparatos electrónicos. Con la desarrollo de la nanotecnología los microchips han ido evolucionando pasando de los chips de finales de la década de los sesenta con cientos de transistores integrados, hasta los chips desarrollados actualmente con capacidad para integrar más de dos mil millones de transistores microscópicos. Los circuitos integrados más complejos son los llamados microprocesadores, que son implementados en dispositivos móviles, ordenadores e incluso electrodomésticos. Pero también encontramos otra familia de circuitos integrados igualmente importantes para la tecnología de la información como los chips de memorias digitales.

    MICROCHIP02
    Básicamente existen tres tipos de circuitos integrados, aunque el circuito monolítico es el tipo más común ya que se pueden utilizar como reguladores de voltaje, receptores de AM, conmutadores, amplificadores, circuitos de televisión y de ordenadores. Generalmente están fabricados en un solo monocristal de sicilio, aunque también los podemos encontrar fabricados en germanio, arseniuro de galio, silicio-germanio, etc. Existen también circuitos monolíticos híbridos de capa fina capaces de contener componentes difíciles de fabricar con tecnología monolítica.
    Por otro lado, también existen los circuitos monolíticos de capa gruesa integrados por circuitos monolíticos sin cápsula, transistores, diodos…, sobre un soporte dieléctrico interconectados con pistas conductoras, donde las resistencias se implementan por serigrafía, ajustándolas por cortes con láser. Posteriormente son protegidos con una resina epoxi que protege el circuito o bien se encapsula mediante cápsulas plásticas o metálicas, dependiendo de la disipación de potencia necesaria.
    Atendiendo al número de componentes que lo integran los circuitos integrados pueden clasificarse según una escala que va desde el más pequeño SSI –Small Scale Integration– inferior a 12 hasta el más grande ULSI –Ultra Large Scale Integration– superior a 100.000 componentes, pasando por escalas intermedias como el Medium Scale Integration MSI, el Large Scale Integration LSI y el Very Large Scale Integration VLSI.
    Los circuitos integrados también pueden ser analógicos o bien circuitos integrados digitales. En el primer caso ven desde simples transistores encapsulados juntos sin unión entre ellos, hasta otros más completos como osciladores, amplificadores o receptores de radio. En cuanto a los segundos, encontramos circuitos integrados desde los más básicos –Y, O, NO– hasta los microprocesadores más complejos.

    Circuito integrado

    Circuitos integrados de memoria EPROM con una ventana de cristal de cuarzo que posibilita su borrado mediante radiación ultravioleta.
    Un circuito integrado (CI), también conocido como chipmicrochip, es una estructura de pequeñas dimensiones de material semiconductor, normalmente silicio, de algunos milímetros cuadrados de superficie (área), sobre la que se fabrican circuitos electrónicos generalmente mediante fotolitografía y que está protegida dentro de un encapsulado de plástico o de cerámica. El encapsulado posee conductores metálicosapropiados para hacer conexión entre el Circuito Integrado y un circuito impreso.
    Los CI se hicieron posibles gracias a descubrimientos experimentales que mostraban que artefactos semiconductores podían realizar las funciones de los tubos de vacío, así como a los avances científicos de la fabricación de semiconductores a mediados del siglo XX. La integración de grandes cantidades de pequeños transistores dentro de un pequeño espacio fue un gran avance en la elaboración manual de circuitos utilizando componentes electrónicos discretos. La capacidad de producción masiva de los circuitos integrados, así como la fiabilidad y acercamiento a la construcción de un diagrama a bloques en circuitos, aseguraba la rápida adopción de los circuitos integrados estandarizados en lugar de diseños utilizando transistores discretos.
    Los CI tienen dos principales ventajas sobre los circuitos discretos: costo y rendimiento. El bajo costo es debido a los chips; ya que posee todos sus componentes impresos en una unidad de fotolitografía en lugar de ser construidos un transistor a la vez. Más aún, los CI empaquetados usan mucho menos material que los circuitos discretos. El rendimiento es alto ya que los componentes de los CI cambian rápidamente y consumen poco poder (comparado sus contrapartes discretas) como resultado de su pequeño tamaño y proximidad de todos sus componentes. Desde 2012, el intervalo de área de chips típicos es desde unos pocos milímetros cuadrados a alrededor de 450  mm2, con hasta 9 millones de transistores por mm2.
    Los circuitos integrados son usados en prácticamente todos los equipos electrónicos hoy en día, y han revolucionado el mundo de la electrónicaComputadorasteléfonos móviles, y otros dispositivos electrónicos que son parte indispensables de las sociedades modernas, son posibles gracias a los bajos costos de los circuitos integrados.

    Historia[editar]

    Geoffrey Dummer en los años 1950.
    En abril de 1958, el ingeniero alemán Werner Jacobi1 (Siemens AG) completa la primera solicitud de patente para circuitos integrados con dispositivos amplificadores de semiconductores. Jacobi realizó una típica aplicación industrial para su patente, la cual no fue registrada.
    Más tarde, la integración de circuitos fue conceptualizada por el científico de radares Geoffrey Dummer (1909-2002), que estaba trabajando para la Royal Radar Establishment del Ministerio de Defensa Británico, a finales de la década de 1940 y principios de la década de 1950.
    El primer circuito integrado fue desarrollado en 1959 por el ingeniero Jack S. Kilby1 (1923-2005) pocos meses después de haber sido contratado por la firma Texas Instruments. Se trataba de un dispositivo de germanio que integraba seis transistores en una misma base semiconductora para formar un oscilador de rotación de fase.
    En el año 2000 Kilby fue galardonado con el Premio Nobel de Física por la enorme contribución de su invento al desarrollo de la tecnología.2
    Robert Noyce desarrolló su propio circuito integrado, que patentó unos seis meses después. Además resolvió algunos problemas prácticos que poseía el circuito de Kilby, como el de la interconexión de todos los componentes; al simplificar la estructura del chip mediante la adición de metal en una capa final y la eliminación de algunas de las conexiones, el circuito integrado se hizo más adecuado para su producción en masa. Además de ser uno de los pioneros del circuito integrado, Robert Noyce también fue uno de los co-fundadores de Intel Corporation, uno de los mayores fabricantes de circuitos integrados del mundo.3
    Los circuitos integrados se encuentran en todos los aparatos electrónicos modernos, tales como relojes, automóviles, televisores, reproductores MP3, teléfonos móviles, computadoras, equipos médicos, etc.
    El desarrollo de los circuitos integrados fue posible gracias a descubrimientos experimentales que demostraron que los semiconductor, particularmente los transistores, pueden realizar algunas de las funciones de las válvulas de vacío.
    La integración de grandes cantidades de diminutos transistores en pequeños chips fue un enorme avance sobre el ensamblaje manual de los tubos de vacío (válvulas) y en la fabricación de circuitos electrónicos utilizandocomponentes discretos.
    La capacidad de producción masiva de circuitos integrados, su confiabilidad y la facilidad de agregarles complejidad, llevó a su estandarización, reemplazando circuitos completos con diseños que utilizaban transistores discretos, y además, llevando rápidamente a la obsolescencia a las válvulas o tubos de vacío.
    Son tres las ventajas más importantes que tienen los circuitos integrados sobre los circuitos electrónicos construidos con componentes discretos: su menor costo; su mayor eficiencia energética y su reducido tamaño. El bajo costo es debido a que los CI son fabricados siendo impresos como una sola pieza por fotolitografía a partir de una oblea, generalmente de silicio, permitiendo la producción en cadena de grandes cantidades, con una muy baja tasa de defectos. La elevada eficiencia se debe a que, dada la miniaturización de todos sus componentes, el consumo de energía es considerablemente menor, a iguales condiciones de funcionamiento que un circuito electrónico homólogo fabricado con componentes discretos. Finalmente, el más notable atributo, es su reducido tamaño en relación a los circuitos discretos; para ilustrar esto: un circuito integrado puede contener desde miles hasta varios millones de transistores en unos pocos milímetros cuadrados4 . Los avances que hicieron posible el circuito integrado han sido, fundamentalmente, los desarrollos en la fabricación de dispositivos semiconductores a mediados del siglo XX y los descubrimientos experimentales que mostraron que estos dispositivos podían reemplazar las funciones de las válvulas o tubos de vacío, que se volvieron rápidamente obsoletos al no poder competir con el pequeño tamaño, el consumo de energía moderado, los tiempos de conmutación mínimos, la confiabilidad, la capacidad de producción en masa y la versatilidad de los CI.5
    Entre los circuitos integrados más complejos y avanzados se encuentran los microprocesadores, que controlan numerosos aparatos, desde teléfonos móviles y horno de microondas hasta computadoras. Los chips de memorias digitales son otra familia de circuitos integrados, de importancia crucial para la moderna sociedad de la información. Mientras que el costo de diseñar y desarrollar un circuito integrado complejo es bastante alto, cuando se reparte entre millones de unidades de producción, el costo individual de los CIs por lo general se reduce al mínimo. La eficiencia de los CI es alta debido a que el pequeño tamaño de los chips permite cortas conexiones que posibilitan la utilización de lógica de bajo consumo (como es el caso de CMOS), y con altas velocidades de conmutación. A medida que transcurren los años, los circuitos integrados van evolucionando: se fabrican en tamaños cada vez más pequeños, con mejores características y prestaciones, mejoran su eficiencia y su eficacia, y se permite así que mayor cantidad de elementos sean empaquetados (integrados) en un mismo chip (véase la ley de Moore). Al tiempo que el tamaño se reduce, otras cualidades también mejoran (el costo y el consumo de energía disminuyen, y a la vez aumenta el rendimiento). Aunque estas ganancias son aparentemente para el usuario final, existe una feroz competencia entre los fabricantes para utilizar geometrías cada vez más delgadas. Este proceso, y lo esperado para los próximos años, está muy bien descrito por la International Technology Roadmap for Semiconductors. 6


















































































































































































































































































































































































































































































































































































































































































































































  • No hay comentarios:

    Publicar un comentario